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Abstract
Eicosanoids have been implicated in the physiological regulation of hematopoiesis with
pleiotropic effects on hematopoietic stem cells and various classes of lineage restricted progenitor
cells. Herein we review the effects of eicosanoids on hematopoiesis, focusing on new findings
implicating prostaglandin E2 in enhancing hematopoietic stem cell engraftment by enhancing stem
cell homing, survival and self-renewal. We also describe a role for cannabinoids in hematopoiesis.
Lastly, we discuss the yin and yang of various eicosanoids in modulating hematopoietic stem and
progenitor cell functions and summarize potential strategies to take advantage of these effects for
therapeutic benefit for hematopoietic stem cell transplantation.
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Introduction
Higher organisms maintain adequate numbers of blood cells throughout their entire lifespan
to meet the normal physiological requirements of blood cell turnover, as well as respond to
increased demand such as injury or infection. In man, approximately 1 trillion blood cells
are produced every day, including 200 billion erythrocytes (red blood cells (RBCs)) and 70
billion neutrophils. This life long process is termed hematopoiesis. Stochastic and instructive
mechanisms play important active roles in maintaining steady hematopoiesis and response to
hematopoietic stress.

The hematopoietic stem cell (HSC) is at the center of blood cell production, having the
capacity to produce all mature circulating blood cells, i.e., erythrocytes, platelets,
lymphocytes, monocytes/macrophages, and all types of granulocytes. HSCs are defined by
two fundamental characteristics: the ability to self-renew; i.e., the ability to form new HSCs,
and the ability to differentiate through multilineage and lineage restricted hematopoietic
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progenitor cells (HPC) into all mature blood lineages. Breakthrough studies in the 1960’s by
Till and McCulloch and colleagues showed that single clonogenic cells existed within the
bone marrow that could self-renew and restore hematopoiesis [1–5] postulating the in vivo
existence of a hematopoietic stem cell. These assays enumerated macroscopic nodules,
colony-forming units-spleen (CFU-S) that formed on the spleens in proportion to the
number of bone marrow cells injected [1]. While the hypothesis that CFU-S were HSC has
turned out not to be true, rather they are more differentiated multipotent progenitor cells,
these studies laid the groundwork for clinical hematopoietic transplantation. What is now
clear is that the only true measure of HSC function is the ability to fully repopulate a lethally
irradiated host. Assays that assess long-term repopulating cells (LTRC), an HSC synonym,
utilize a donor HSC graft admixed with a competing congenic graft and markers distinct for
the donor and competitor graft to distinguish blood production from each source of cells and
calculation of competing repopulating units, a measure of HSC [6,7]. When compared in
limiting-dilution, the frequency of competitive repopulating units (CRU) contained within
the test graft can be determined by Poisson statistics [8–10]. Recently, it has become clear
that HSCs are a heterogeneous population and classes of HSC with short (up to 16 weeks),
intermediate (up to 32 weeks) and long-term (>32 weeks) [11] engraftment capabilities have
been characterized. In light of these various potentials for self-renewal, the most stringent
test of HSC potential, specifically the long-term HSC, is serial transplantation from primary
recipients into secondary recipients, or beyond.

Before the advent of transplantation assays for HSC function, in vitro assays for culturing
hematopoietic cells allowed many of the developmental pathways involved in hematopoietic
homeostasis to be identified and the regulatory hematopoietic factors directing this process
to be identified and cloned. These colony-forming cell assays identify populations of
hematopoietic progenitor cells with distinct lineage-restricted differentiation patterns
characterized by the type of colonies formed in semi-solid media. These colonies were
determined to be clonally derived [12] and functionally distinct, establishing the beginnings
of a hierarchical model. Alongside transplantation and clonogenic colony assays,
development of monoclonal antibodies that define phenotypic markers of various
hematopoietic cells has enabled placement of the various hematopoietic populations along a
differentiation hierarchy, or “hematopoietic tree” (Figure 1).

HSCs reside in very defined and limited microenvironments, or “niches” in the bone marrow
[13], and signals within these niches direct HSC maintenance. Osteoblasts are a significant
regulatory component of the endosteal bone marrow niche [14–17]. Adhesion molecules,
including, but not limited to, integrins, selectins, cadherins, osteopontin and CD44, as well
as other receptors, contribute to HSC and HPC tethering in the bone marrow [18]. Perhaps
the most important axis regulating HSC and HPC tethering and trafficking to and from the
bone marrow niche, is the interaction between the CXC chemokine receptor 4 (CXCR4) and
its ligand stromal cell-derived factor-1α (SDF-1α) [19,20].

Hematopoietic stem cell transplantation is routinely used to treat leukemias, cancer,
hematologic diseases and metabolic disorders; however, long term blood reconstitution with
some sources of HSCs is limited by inadequate number, inability to migrate/home to
marrow niches, and poor engrafting efficiency and self-renewal [21–23]. An appropriate
bone marrow niche is required for HSCs to self-renew and differentiate and only HSCs
homing, i.e., trafficking from the peripheral blood after injection to the bone marrow niche,
are able to repopulate a lethally irradiated recipient long-term [24,25]. Homing is a rapid
process, which is measured in hours (or at most 1–2 days) and is distinct from the concept of
“engraftment”, which is more a description of the culmination of events pre- and post-
homing.
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Hematopoietic stem and progenitor cells normally reside within the bone marrow, while the
mature cells they produce exit the marrow and enter the peripheral blood. Evidence over the
last several decades clearly demonstrates that HSC and HPC also exit the bone marrow
niche and traffic to the peripheral blood [26–31]. This natural trafficking of HSC and HPC
to the peripheral blood can be enhanced after chemotherapy treatment, or with
pharmaceutical agents like granulocyte-colony stimulating factor (G-CSF) [28,29]. These
“mobilized” cells can then be collected by apheresis and are widely used for autologous and
allogeneic transplantation.

Pleiotropic Effects of Prostaglandins on Hematopoiesis
Numerous studies spanning the 1970s to 1990s documented physiological regulatory roles
for prostaglandin E2 (PGE2) in hematopoiesis. Extensive work by us and others
demonstrated that PGE inhibited the in vitro growth of human and mouse HPC, defined as
colony forming unit-granulocyte/macrophage (CFU-GM) [32–37]. We also showed that
PGE acted as a negative regulator of myeloid expansion to counterbalance positive signaling
from the colony-stimulating factors in order to maintain appropriate HPC proliferation
[38,39] forming a selective feedback inhibition loop [37]. This physiological role of PGE2 in
hematopoiesis and negative feedback regulation on myelopoiesis was documented by
studies in mice differing in PGE synthetic capacity [39,40]; documentation of abnormal
PGE2 responses in leukemia patients [32,33,36,41,42]; prognostic association of disordered
PGE2 response in patients with myleodysplastic syndromes (MDS) [43]; abnormal HPC
response in patients cured of germ cell tumors but progressing to acute leukemia [44]; and
association of HPC response to PGE2 with clinical response to Interferon-γ in chronic
myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL), and Hodgkin's disease
patients [45,46]. Repetitive in vivo PGE2 administration validated inhibition of CFU-GM
frequency and cell cycle rate, with decreased marrow and spleen cellularity [47–49]. The
effects of PGE2 on myeloid HPC were considered to be direct [50]; however, we later
showed that PGE2 could induce F4/80+, Gr-1+, Mac-1+, myeloid suppressor cells,
particularly when administered in vivo [49,51,52].

In contrast to effects on myelopoiesis, PGE2 stimulates erythropoiesis by increasing
erythropoietin production by the kidney [53] and by enhancing proliferation of the erythroid
progenitor cells (BFU-E) [54–58]. Similarly, we showed that PGE2 enhances proliferation of
multipotential progenitor cells that give rise to granulocytes, erythrocytes, monocytes and
megakaryocytes (CFU-GEMM) [55,57]. In additional studies, we showed that PGE2
increased BFU-E and CFU-GEMM, which could be direct [59] or mediated through factors
released by T cells [56,57,59].

Dendritic cell (DC) homeostasis, like all mature blood cells, is maintained via hierarchal
generation from hematopoietic precursors and recent studies from our lab (P Singh and LM
Pelus, unpublished) show that PGE2 regulates DC-committed progenitor cells and is
required for optimal in vivo DC development.

While it is well established that prostaglandins have inhibitory effects on mature lymphocyte
functions, PGE2 has thus far only been shown to inhibit B cell lymphopoiesis, having effects
on pre-B cells [60,61]. Moreover, prostaglandins and cyclooxygenase enzymes present in
stromal cells can regulate B lymphopoiesis [62].

Prostaglandins and Stem Cells
While much of the early biology of the effects of prostaglandins focused on progenitor cells,
mainly owing to a lack of models to enumerate stem cell function, early studies clearly
suggested that PGE2 likely affected HSC function and these effects were independent from
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effects on progenitor cells. Studies by Fehrer and Gidali in 1974 showed that treatment of
murine marrow cells in vitro with PGE2 increased day 9 CFU-S in cell cycle that was cAMP
independent [63]; however, in vivo dosing of PGE2 in mice led to little or no increase in
hematopoiesis [64]. An increase in CFU-GM in S-phase was also seen after PGE2 pulse
exposure of human marrow [65]. In 1982, we showed that short-term exposure of human or
mouse bone marrow to PGE2 in vitro stimulated the production of cycling CFU-GM from a
population of quiescent, non-cycling cells, most likely stem cells, which were dependent on
time course and concentration of PGE2 [50] and were cAMP independent [66]. Kinetics of
PGE2 exposure were critical for stimulatory versus inhibitory effects on HPC frequency and
cell cycle and as little as 3 hour exposure of bone marrow cells to PGE2 increased the
production of CFU-GM [66]. These findings were also recently validated with umbilical
cord blood (UCB) cells, another source of HSC [67]. PGE2 treatment of purified human
blood CD34+ cells was also shown to increase both myeloid and erythroid progenitor
formation [68]. However, while highly suggestive, earlier studies did not directly measure
HSC function. Recently, a requirement for PGE2 for development of hematopoiesis was
found in a zebrafish screen [69] and ex vivo pulse exposure to the PGE2 derivative, 16,16 –
dimethyl PGE2 (dmPGE2) was shown to increase the repopulating capacity of murine bone
marrow cells and increase zebrafish kidney marrow recovery, validating the hypotheses
proposed in the 1980’s. However, mechanisms for increased engraftment and recovery were
not determined.

PGE2 increases long-term stem cell engraftment
Analysis of HSC frequency by Poisson statistics in either conventional limiting-dilution
congenic transplant models in mice [69] or in a more refined limiting-dilution model in
hybrid congenic mice that permits head-to-head comparison of the HSC populations [70]
show a ~4-fold increase in HSC frequency as a result of short-term ex vivo exposure of
marrow to dmPGE2 and strongly suggest a direct effect on HSC. At 5 months post-
transplant, analysis of peripheral blood chimerism showed significantly higher levels of
white blood cells derived from dmPGE2-treated marrow cells, with full myeloid cells and B
and T lymphocyte reconstitution with no obvious lineage bias [70]. Transplant of marrow
from primary transplant recipients into secondary recipients and secondary recipients into
tertiary recipients, all without any further ex vivo manipulation, validated the self-renewal
capacity of ex vivo dmPGE2-treated repopulating cells [70] and indicates that the effect of
dmPGE2 pulse-exposure is stable and manifested on the long-term repopulating stem cell
population (LT-HSC). Transplantation of human hematopoietic cells in immunodeficient
mice offers a model system to evaluate human HSC function in vivo [71]. In a similar
fashion to that shown using mouse bone marrow cells, short-term ex vivo pulse exposure to
dmPGE2 was recently demonstrated to enhance engraftment of human umbilical cord blood
HSC in NOD/SCID-IL2-γ-receptor null (NSG) mice [67]. It is important to note that these
positive results on LT-HSC in the context of hematopoietic transplantation are the result of
ex vivo treatment with dmPGE2, and are in slight contrast to an earlier in vivo study [64] and
more recent study [72] using in vivo treatment with PGE2 where the enhancement by PGE2
was lost in competitive transplants in the long-term. These data suggest that the combined
effects of extended in vivo PGE2 treatment acting directly through EP receptors on HSC and
indirectly through modulation of the HSC niche in bone marrow has effects that differ from
a short ex vivo pulse exposure of HSC to PGE2. Further studies exploring the role of in vivo
versus ex vivo treatment with PGE2 and its analogues are likely to lead to refinements in
clinical strategies for improving hematopoietic function and transplantation.

PGE2 increases HSC CXCR4 and migration to SDF-1α and homing efficiency
Effects on homing, apoptosis or proliferation can positively or negatively alter HSC function
and hematopoietic transplantation. Since we previously showed that PGE2 can have dual
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effects on hematopoiesis [50,66] we sought to define its mechanism of action in
enhancement of hematopoietic engraftment to better understand the potential clinical utility
of transient ex vivo dmPGE2 exposure. We demonstrated that pulse-exposure of mouse and
human stem and progenitor cells to dmPGE2 increases CXCR4 expression and significantly
enhances migration to SDF-1α indicating that CXCR4 up-regulation on HSC coincides with
enhanced migratory function. This enhancing effect of dmPGE2 on chemotaxis to SDF-1α
was also blocked by AMD3100, a selective CXCR4 antagonist, further indicating a primary
role for the CXCR4 receptor. These results are consistent with previous reports indicating
that PGE2 increases CXCR4 expression in microvascular endothelial cells through
stimulation of transcription factor binding to Sp1-binding sites [73], and that EP3/EP4
signaling in tumor stromal cells modulates CXCR4 signaling [74]. In addition, it has been
reported that a PGE2 mediated increase in cAMP increases human CD34+ cell CXCR4
expression through a PKC-zeta signaling pathway [75].

As described earlier, successful hematopoietic reconstitution requires that administered HSC
traffic/home to bone marrow niches where they can engraft, and the CXCR4/SDF-1α axis is
a critical component of this homing process. We hypothesized that dmPGE2-induced
enhancement of CXCR4 expression and migration to SDF-1α may increase in vivo homing
of HSC, providing a mechanistic insight into the enhanced hematopoietic engraftment.
Pulse-exposure of enriched mouse HSC to dmPGE2 ex vivo increased their bone marrow
homing efficiency by 2-fold compared to cells treated with control vehicle when directly
compared head-to-head in congenic hybrid mice. Increased homing of more differentiated
cells was not observed when similarly evaluated, suggesting that the enhanced homing effect
of dmPGE2 is specific to HSC. Similarly, dmPGE2 pulse exposure of human cord blood
HSC significantly enhanced their homing efficiency in NSG mice [70,76].

PGE2 decreases apoptosis
While dmPGE2 enhanced the homing ability of HSC 2-fold over control, the enhancement
seen in hematopoietic engraftment was 4-fold, suggesting other mechanisms mediating HSC
engraftment were involved. Apoptosis is an important regulatory process in normal and
malignant hematopoiesis and PGE2 signaling has been implicated in anti-apoptotic effects in
many cell types [77–79]. Pulse-exposure to dmPGE2 reduced Annexin-V and active
caspase-3 levels in mouse and human HSC, suggesting that the enhancement of HSC
function by dmPGE2 could result from enhanced HSC survival [70,76]. Consistent with
reduced levels of active caspase-3, intracellular levels of the endogenous caspase-3 inhibitor
Survivin were significantly higher in both mouse and human HSC, consistent with our
previous findings that Survivin regulates apoptosis and proliferation in HSC [80,81] and
studies by others that PGE2 can increase Survivin levels in cancer cells [82,83]. QRT-PCR
analysis of treated HSC also showed similarly elevated levels of Survivin mRNA [70].

PGE2 increases entry of HSC into cell cycle
We previously showed that Survivin regulates HSC cell cycle entry and progression [80,81].
Early studies by us and others also showed that PGE2 can regulate the cell cycle of
hematopoietic progenitors [50,63,65]. This suggests that an increase in HSC self-renewal
and proliferation might contribute to the enhanced engraftment by dmPGE2-pulsed cells. In
vitro exposure of highly purified primitive mouse LT-HSC to dmPGE2 significantly
increases the proportion of LT-HSC in cell cycle (G1+ S/G2M) compared to controls. No
significant effect on the cell cycle rate of HPC or more differentiated cells was observed,
strongly suggesting that the effects of dmPGE2 on cell cycle rate are selective to HSC. To
confirm the effect of dmPGE2 on enhancement of HSC cell cycle observed in vitro, bone
marrow cells were pulsed with dmPGE2 and injected into congenic mice treated with BrdU
post-transplant, and the proportion of donor BrdU+ HSC determined 16 hours later. A ~2-

Pelus and Hoggatt Page 5

Prostaglandins Other Lipid Mediat. Author manuscript; available in PMC 2012 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



fold increase in the proportion of homed HSC in S+G2/M phase was observed for cells
pulsed with dmPGE2 prior to transplant, confirming that short-term exposure of HSC to
dmPGE2 stimulates HSC to enter and progress through cell cycle in vivo [70]. These studies
suggest a model in which the coordinated effects of dmPGE2 treatment on homing, survival
and proliferation lead to the 4-fold enhanced hematopoietic engeraftment.

Other Eicosanoids also affect Hematopoiesis
While most studies have focused on the effects of prostaglandins on hematopoiesis, the
effects of other eicosanoids has not gone without notice. Like prostaglandins, leukotriene B4
(LTB4) and the cysteinyl leukotrienes are produced in the marrow microenvironment [84],
by hematopoietic stromal cell cultures and by freshly isolated bone marrow mononuclear
cells [85]. The 5’-Lipoxygenase (5’LOX) enzyme is also detected in hematopoietic
progenitor cells [86].

LTB4 is a potent stimulator of granulocyte chemotaxis [87,88], while LTD4 stimulates
chemotaxis and transendothelial migration of human HSC [86]. While PGE2 inhibits
myeloid progenitor cells in vitro, LTB4, LTC4 and LTD4 increase mouse and human
progenitor cells [89–91]. Cyclooxygenase (COX) inhibitors also enhance myeloid
progenitor cell proliferation whereas 5'-LOX inhibitors reduce myeloid progenitor cell
proliferation [89,90,92]. Moreover, PGE stimulates early and late erythroid progenitor cells
[57,58], while LTB4 and LTC4 inhibit them, and LOX inhibitors enhance erythroid
progenitors [93]. In mice, dual COX inhibition enhances HPC recovery [92], while selective
5’-LOX inhibitors decrease CFU-GM and blast colony forming cells [89], suggesting an
effect on a cell population more primitive than the CMP and CLP. The addition of LTB4 to
UCB cells cultured with growth factors reduces total HSC produced and enhances HPC
proliferation, whereas antagonism of the LTB4 receptor enhances production of HSC and
blocks HPC proliferation [94]. Recently, deletion of 12/15-lipoxygenase was shown to
reduce canonical Wnt signaling, leading to a reduction in HSC quiescence and
hematopoietic defects [95].

While the cannabinoids have effects on mature cells of the immune system [96,97] it is
becoming clear that they also have effects on earlier hematopoietic cells. Anandamide can
act as a synergistic growth factor for hematopoietic progenitor cells [98] but promotes
erythroid apoptosis [99]. 2-arachidonoylglycerol (2-AG) also stimulates progenitor cells
[98] and hematopoietic cells expressing the cannabinoid CB2 receptor migrate in response
to 2-AG [100]. Recently, 2-AG has also been shown to increase CFU-GEMM colony
formation and cell migration [101], and activation of cannabinoid receptors on murine
embryonic stem cells (ESC) promotes hematopoietic differentiation [102].

It is clear that prostaglandins, leukotrienes and cannabinoids have important roles in
hematopoietic homeostasis, and evaluating their responses is critical to understanding
eicosanoid function and development of eicosanoid-based therapeutic strategies for
improvements in hematopoietic transplantation. While this review has focused on a few key
players, there are abundantly more bioactive eicosanoids which regulate hematopoiesis with
potential therapeutic benefit to cure diseases (as reviewed in [85,103,104]). While
cyclooxygenase enzymes and their products are expressed in early and late erythroid
progenitors and clearly regulate erythropoiesis [105], cytochrome P450 derived eicosanoids
also effect erythropoiesis. Studies by Abraham et al. demonstrated that picomolar
concentrations of the cytochrome P450 arachidonate metabolites, 19- and 20-
hydroxyeicosatetranoic (HETE) acid, increased CFU-E growth 4 to 6 fold, with 20-HETE
being considerably more potent [106]. Recently, 20-HETE was also shown to regulate the
chemotactic response of endothelial progenitor cells to SDF-1α [107], possibly suggesting a
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role of yet another eicosanoid in trafficking of hematopoietic cells. Intriguingly, even the
lipid substrate for eicosanoid enzymes can alter biologic effects, as omega-3 derived fatty
acids vary considerably from omega-6 derived products [108]. Recently, it was
demonstrated that mice fed a diet high in omega-3 fatty acids had reduced CFU-M and
CFU-GM, yet had increased common myeloid progenitors [109]. Clearly, furthering our
understanding of the interactions and molecular pathways of the plethora of eicosanoids and
their role in hematopoietic regulation are likely to lead to advances in clinical therapies.

The Yin and Yang of Prostaglandins and Endocannabinoids in
Hematopoiesis

In many physiological systems, prostaglandins, leukotrienes and endocannabinoids exhibit
compensatory or opposing roles [110]. Prostaglandins and leukotrienes have numerous
opposing roles in pulmonary fibrosis [111], whereas in other systems they act coordinately
[112]. We and others have shown that cannabinoids reduce signaling through the CXCR4
receptor [110,113,114] and as a consequence reduce neutrophil migration [115,116]. This is
in contrast to PGE2 that up regulates CXCR4 expression [70,76,110], suggesting that
prostaglandins and endocannabinoids can act in opposing fashion in hematopoiesis. Analysis
of cannabinoid receptor expression using numerous antibodies and flow cytometry showed
that they are expressed on mouse and human HSC. Utilizing the dual cannabinoid receptor
agonist CP55940 we found that it reduced both CXCR4 and the adhesion molecule very late
antigen-4 (VLA-4) expression on mouse HSC, while dmPGE2 increased expression of
CXCR4 and VLA-4 expression [110]. These data support a yin and yang role for
cannabinoids and prostaglandins on hematopoietic cells and the reduction of CXCR4 by
cannabinoid agonism suggested that they may facilitate un-tethering of HSC and HPC from
bone marrow niches that could be used to mobilize stem cells. In a further series of studies,
we found that single administration of the CB2 selective agonist GP1a and the dual CB1/CB2
agonist CP55940 but not the CB1 selective agonist ACEA significantly mobilized
hematopoietic progenitor cells to the peripheral blood and that the addition of a single dose
of CP55940 to a standard 4-day mobilizing regimen of G-CSF significantly increased
progenitor cell mobilization compared to G-CSF alone [110]. Two separate reports by Jiang
et al. have also now demonstrated that cannabinoid signaling mediates mobilization, and that
endocannabinoids are expressed in bone marrow and increase HPC migration and
proliferation in vitro [117,118].

Summary
In vivo analysis of the effects of short-term pulse exposure to dmPGE2 clearly demonstrates
that it has direct and stable effects on HSC function. Enhancement of HSC frequency and
engraftment by dmPGE2 results from effects on HSC homing and cell cycle activity
involving up-regulation of CXCR4 and Survivin, with increased chemotactic response to
SDF-1α and reduced apoptosis. The ability to facilitate homing, survival and proliferation of
HSC by short-term ex vivo dmPGE2 exposure offers an exciting clinical translation strategy
to improve hematopoietic transplantation, especially in transplant settings characterized by
low HSC numbers, such as umbilical cord blood and some mobilized peripheral blood stem
cell products. Our experimental preclinical limiting dilution transplant studies show that
equivalent engraftment is achieved with four-fold fewer dmPGE2-treated cells compared to
untreated cells. Homing and migration studies utilizing UCB HSC also clearly support
potential translation of short-term dmPGE2 exposure to human hematopoietic grafts.
Clinical analysis of the ability of dmPGE2 to enhance engraftment of UCB is currently
ongoing [119].
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The available data suggest that LTB4 signaling decreases HSC self-renewal and increases
differentiation, while blocking LTB4 receptors increases self-renewal and blocks
differentiation. Thus, the use of a leukotriene receptor antagonist or LOX inhibitor in the
post-transplant setting may favor self-renewal.

The effects of cannabinoids on hematopoietic stem and progenitor cell mobilization suggest
that they can be modulated for therapeutic benefit. The fact that signaling through the CB
receptors on hematopoietic cells can have effects opposite to PGE2 suggests several
improvements to therapeutic strategies. Since CB signaling inhibits CXCR4 mediated
migration while dmPGE2 exposure up regulates CXCR4 expression, combination use of ex
vivo dmPGE2 exposure plus CB receptor antagonism may improve hematopoietic stem cell
homing. Similarly, while dmPGE2 production within the bone marrow may provide signals
enforcing cell retention through up regulation of CXCR4 and VLA-4, inhibition of PGE2
receptor signaling coordinate with agonizing CB receptors may facilitate acquisition of
mobilized hematopoietic stem and progenitor cells for transplantation.

The availability of FDA approved pharmaceuticals that specifically regulate biosynthesis
and signaling of prostaglandins, leukotrienes, cannabinoids and other eicosanoids will
facilitate rapid translation of eicosanoid based therapeutic research, both at the level of
improving the yield of a hematopoietic graft or measured in terms of graft performance.

Highlights

• Short-term pulse exposure of hematopoietic stem cells (HSC) to dmPGE2
enhances their frequency and engraftment resulting from effects on HSC
homing and cell cycle activity involving up-regulation of CXCR4 and Survivin,
with increased chemotactic response to SDF-1α and reduced apoptosis.

• Short-term pulse exposure of hematopoietic stem cells to dmPGE2 has direct
and stable effects on HSC function.

• The ability to facilitate homing, survival and proliferation of HSC by short-term
ex vivo dmPGE2 exposure offers an exciting clinical translation strategy to
improve hematopoietic transplantation,
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Figure 1.
Blood cell development is a hierarchical process with self-renewal and maturational
divisions occurring as a continuum under the direction of single or multiple growth factors.
Shown is a simplistic representation incorporating current understandings of the
hematopoietic process. Specific progenitor cells include the common lymphoid progenitor
(CLP), common myeloid progenitor (CMP), granulocyte-monocyte progenitor (GMP),
megakaryocyte-erythrocyte progenitor (MEP), the megakaryocyte (CFU-Meg) and erythroid
(BFU-E) progenitors and the common macrophage and dendritic cell progenitor (MDP).
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